

 Review Of ReseaRch

impact factOR : 5.7631(Uif) UGc appROved JOURnal nO. 48514 issn: 2249-894X

 vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

1

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT
ON SOFTWARE PROJECT DEVELOPMENT

Meer Tauseef Ali1 and Dr .Syed Abdul Sattar2
1Research Scholar, Department of Computer Science, Rayalaseema University, Kurnool, A.P.

2Professor, Director (R&D) & Principal, Nawab Shah Alam Khan College of Engg. & Tech.,
Hyderabad.

ABSTRACT :

As new Software project success measures are being
discussed, the projects failing to be complete within the
traditional constraints continue to hamper major
corporations, global business and Government agencies.
Even though majority of projects fail to be completed on time
and on budget every year, trends are not showing any big
improvements in these areas. As large projects continue to
face performance issues, project managers can relate project
size to increases in severity and frequency of many common
project challenges. During review of many of these surveys
the correlation between project size and project failure is evident. Global business specifically to IT projects
different methodologies do not provide a large enough benefit to combat the challenges of increased project
size. The objective of this study is to define and implement Defect Prevention mechanism, for the various
stages of software project development, to reduce the quantity of defects and then to determine a strategy
for decreasing the testing effort needed for development projects in an organization.

KEYWORDS : Defect data , Severity, Probability, Phase injected, Agile methodology.

INTRODUCTION:

As more and more projects are utilizing different methodologies to deliver fast business value
identifying project success is consistently being discussed. The amount of studies and surveys conducted
every year on project management failures is plentiful. According to an IBM study, only 40% of projects meet
schedule, budget and quality goals. Further, they found that the biggest barriers to success are people
factors[1]. Geneca, a software development company, noted from its studies that fuzzy business objectives,
out-of-sync stakeholders and excessive rework mean that 75% of project participants lack confidence that
their projects will succeed. [2] 50 % of businesses had an IT project fail during 2012 year, according to a survey
by cloud portfolio management provider Innotas. [3] The primary reason, according to 74 percent of
respondents, was a lack of resources to meet project demands. The Portland Business Journal found similarly
depressing statistics: Most analyses conclude that between 65 and 80% of IT projects fail to meet their
objectives, and also run significantly late or cost far more than planned. “Many of these statistics show the
high number of projects that ultimately are delivered late and over budget while providing some of the
drivers behind these failures. [4]

Only 26 percent of all projects succeed. Just 42 percent of organizations report having high
alignment of projects to organizational strategy. This lack of alignment of projects most likely contributes to

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

2

the surprising result that nearly one half of all strategic initiated (44 percent) are reported as unsuccessful.
Project success rates are rising. Organizations today are wasting an average of US$97 million for every US$1
billion invested. [5]

As study goes through this research area one can quickly correlate many of these issues back to a
single variable in the project and that is project size. When speaking about large and small projects factors
discussed are costs, complexity and durations. Software development organizations are frequently being
challenged with overcoming the after effects of failed project delivery. Report to illustrate the correlation
between project size and failure. The common drivers of project failure will be identified and discussed in
terms of project size. Any software which must be delivered to the consumer should be defect free.
Therefore finding out defects and remedies for the same plays an important role in the software
development process. The ability to predict defects is also of primary importance in this regard. All these
factors must be taken into consideration during the software testing phase. Software testing is employed in
the software development process to find out any occurrence of defects in the software. Numerous defect
analysis and prediction techniques are used, which facilitate in defect prevention. In software defect
prediction we predict the occurrence of defects by observing the existing trends and occurrence of defects.

2. RELATED LITERATURE

According to Perry, W. E. et al[6], The Software Development process always has deficiencies with
regard to test activities. As per Spillner A. et al, .[7] real testing activity starts after the coding stage at which
point the implementation appears to be complete. Jalote, P. [8] stated that each development stage injects
defects into the application. The percentage of defects injected may vary from one stage to another.

Humphrey, W. S.et al [9] stated that correcting defects at the later stages of the development is more
complicated, expensive and time-consuming than correcting them at earlier stages. It is therefore the best
way to optimize the development process costs and to shorten the development time.

According to Weber, D.G.et al[10] defect prevention activity is a mechanism for spreading lessons
learned across the projects,. Mays, R.G., et al. [11] objective of defect prevention are to define and implement
techniques to reduce the total number of defects in the process of development and to prevent certain
classes of defects from reoccurring.

As per Anderson, T., Barrett, P.A., Halliwell, D.N., Moudling, M.L et al [12][13] the defects may have
been identified on other projects as well as in earlier stages or tasks of the current project. If we have defect
prevention activity at every stage then there is a tendency to reduce the number of defects. Defect
Prevention involves analyzing defects that were encountered in the past and taking specific actions to
prevent the occurrence of those types of defects in the future.

According Abraham, P., Leeba, S., Abraham, D., Paul, R.et al[14] defects occurrence reduces by
implementing defect prevention process in any organization. It has been observed that average 40-50% of
defects are covered in every stage of the development by Defect prevention activities. If the detection of
these 40% of defects is covered by Defect prevention activities then it reduces the cost of developing the
software drastically. The rest (60%) of defects are mostly identified in the testing stage. [15]

If business software is developed without sufficient understanding of the requirement specifications,
then this deficiency of the requirements costs more to operate and maintain the system in production. From
the beginning, the quality team or development team should trace the requirement through horizontal or
vertical traceability matrix.

2.1 Classification of Defects

Software Defects are normally classified on the basis of Severity, Probability, Priority, Related
Dimension of quality, Related Module or Component, Phase Detected and Phase Injected.

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

3

2.1.1 Related Module /Component
Related Module / Component indicate the module or component of the software where the defect

was detected. This provides information on which module or component is buggy or risky. For example
whether it is found in Module A, B, C and so on.

2.1.2 Phase Detected

Phase Detected indicates the phase in the software development lifecycle where the defect was
identified in, Unit testing, Integration testing, System testing or in Acceptance testing phase.

2.1.3 Phase Injected

Phase Injected indicates the phase in the software development lifecycle where the bug was
introduced. Phase Injected is always earlier in the software development lifecycle than the Phase Detected.
Phase Injected can be known only after a proper root-cause analysis of the bug. Whether the bug found in
requirements phase, high level Design, detailed design, coding or in deployment phase. The categorizations
above are just guidelines and it is up to the project/organization to decide on what kind of categorization to
use. In most cases, the categorization depends on the defect tracking tool that is being used. It is essential
that project members agree before hand on the categorization (and the meaning of each categorization) so
as to avoid arguments, conflicts, and unhealthy bickering later.

2.2 Further Defect Classification

The further defect classification method involves manually evaluating defects to add contextual
meta information. The Team Software Process suggests some of the following pieces of information as a
starting point for creating defect taxonomy. Firstly, when a defect is reported thereby the feature related to
which it is reported will be marked. Secondly the code in which the defect was found will be marked naming
it as Module discovered.

A standardized description of the defect Is needed, such as "assignment," "data," or "syntax." so as
to broadly distinguish Defect type. Sometimes the bug makes it into the software in the first place. This
should also be standardized, for example "education," "oversight," or "mistake." In which of the activities
the defect was injected. for example, "requirements," "design," or "implementation." What were the
activities being performed when the defect was discovered? These would be the same as the list for phase
injected.

This simple method has some disadvantages, the biggest one being that we usually will not be able
to understand the reason a defect was injected until after we understand the root cause of the defect. Also,
unless we were the one who wrote the code, then only we can guess at the reason (was this an oversight,
mistake, or education?) the defect was injected.

 As such, some knowledge of the system is required to perform the analysis. There are other
methods for defect classification that overcome this problem but take a little more training and planning to
apply well. Since the defects in a software system are a direct reflection of the process, knowledge, and skills
of the team that injected them, once the defects are classified you have some serious power for enacting
positive change.

3. SOFTWARE PROJECT DEFECT ANALYSIS
3.1 Benchmark for project success

As the agile methods is extremely prevalent in the software development industry, business value
and speed to market have been tagged as the measure of success while traditional constraints are thought
to have some flexibility. Project success can and will be defined by the client or company embarking on a
project to enhance their business. However, large-scale projects fail due to the delays in schedule and
enormous cost overruns. [16]

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

4

3.2 Time Constraints
Many project managers are tasked with providing accurate cost estimates and end dates for multi-

year projects before gaining funding or project approval. Although we refine as we build out our plans, many
of us can never live within our initial funding limits or schedule constraints [18]. However, when regarding
initial cost and schedule estimates the longer the project are the less certainty around much of this original
information [19]. This may seem counterintuitive as we learn more as the project goes on and are able to get
a better idea of what the finished product will eventually be as the months pass.

3.3 Requirement Complexities

As the long duration of projects are kicking off many people can associate the grand scale of the
project with unlimited space to add large complex items into it. In smaller projects, the idea of defining
specific scope driving value is easier to achieve as the thought of a tight condensed budget and schedule
becomes more practical.

3.4 Communication Barriers

For many large software projects effort is increased and therefore the number of resources usually
follows. There can also be situations where silos are built in the form of various contracts awarded on the
same project. This creates additional challenges with handoffs, risks and dependencies.

3.5 Usage of Methodologies

However, Agile software projects face similar trends with regards to project size and failure rates. In
a study it is stated that 34% of agile failures can be related to poor planning. Although planning itself can be
done with success on small and large projects it ties back to complexity. The planning of large projects with
many dependencies regardless of methodology increases the complexity.

4. RESULTS AND INTERPRETATIONS:
Details of Defect Data

The following graphs summarize some of the more interesting trends we discovered by looking at
the data. There were two very interesting findings. First, we had a major problem in requirements that
resulted in significant rework. Second, we need to rethink the way testing is done and work to improve.

Table-1: shows the percentage count of defects injected

S.No Defects types Percentages

1 Communication 13
2 Communication(change) 25
3 Communication (requirement) 12
4 Data Issues 9
5 Default behavior 7
6 Deployment 1
7 Education 17
8 Misconfiguration 12
9 Overwrite 3
10 Process 2

Table-1 show the reason why various defects were injected. Defects that originate in tests were

excluded from this particular analysis so that we could focus on other areas that might also be interesting.
Communication in our vernacular refers to cases where the defect resulted from misinformation originating

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

5

in documentation or personal interactions (e.g. a meeting).We noticed that a disproportionately large
number of defects resulted from miscommunication and so broke down communication into true
communication problems, changes that were not effectively communicated, and new requirements that
were only flushed out as reported bugs from the customer.

The information in Table-1 shows that 55% of reported non-test defects resulted from requirements
or communication issues. While 18% of reported non-test defects were injected directly by the
development team. This 18% includes oversights (things you just forgot), education (things you should have
known how to do), and mistakes (things you understood and meant to do but botched somehow). We also
included process issues in which the process we were following created an opportunity for a defect that was
actually injected into the software and escaped to the customer for review. Defect injection reason
percentage, shows that communication and requirements issues account for 55% of all non-test related
defects. Further, 18 % of defects were injected directly by the team and might be avoided through better
training, testing, or peer reviews. [20]

While understanding why we injected defects is interesting, understanding where the defects are
injected is important to creating a plan for doing something about it. Table 2 shows the defect percentage
count for each of the main areas of the software products. The top three trouble spots, "bug farms" were
the display configuration (user interface), test cases, and data conversion and extraction code. That poor test
cases were one of our greatest sources of defects is extremely disturbing.

Table-2: shows percentage count of defects injected into different software modules.

S.No Defects types Percentages

1 Display Configuration 25
2 Test Case 22
3 Crawl configuration 7
4 Conversion/ Extraction 14
5 Environment Configuration 3
6 End user confirmation 2
7 Taxonomy 4
8 Not a bug 3
9 Source Configuration 4
10 Unable to reproduce 7
11 others 9

Table-2 includes defects related to tests. Putting it all together (figure 1) really shows our trouble

spots and gives a pretty fair view of where the team needs to improve, When we look at this data, we see
that communication in general is a pretty big problem. There were acute problems when trying to
communicate requirements in the User Interface, especially late feature requests and changes. Finally, the
team just couldn't get it together for testing and made mistakes all over the place.

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

6

Figure- 1: Count of defects by module by reason injected.

Now getting into clear and more precise information on how the software projects development

industry is coping in handling the Defects at large. As the study is about to explore the reason behind what
exactly the scenario in software projects developments during 2011 to 2017. [21] [22]

Figure- 2: shows the percentage of software projects achieving the original business goals.

The Figure 2 shows that since 2011 projects on average have been completed on time and on budget

less than 60% of the time. Clearly depicts the Scenario of software development as there is drastic
improvement in the dealing with business objectives.

Figure -3: shows the percentage of software projects getting completed within original budget.

55

60

65

70

2011 2012 2013 2014 2015 2016 2017

MET ORIGINAL BUSINESS GOALS

50

55

60

2011 2012 2013 2014 2015 2016 2017

COMPLETED WITHIN
ORIGINAL BUDGET

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

7

Figure 3 Shows the improvement in terms of completing the project within the allocated budget,
there was too low in 2016 at 53% whereas in 2017 it reached 58% comparatively. Since 2013 the business
market was coping with the drastic change, thereby the demand in business software was high which
resulted in frequent changes in frequency causing the overall budget to be overrun.

Figure- 4: shows the percentage of software projects completed on time.

Figure 4: shows details of software projects completing on time. In 2017 there is a remarkable

growth in completing the project on time when compared to 2014, 2015 and 2016 respectively. By properly
implementing the changes in software requirement much of the rework of testing is reduce, thereby
allowing project to be completed in time.

Figure -5: shows the percentage of software projects failed and the budget is lost.

Most often, software engineers or developers do not have a good design before coding or writing

programs or software (Poor or no designs at all). This is the major cause of software failure today.
Developers most times boot their computers and navigate to the programming language location and they
will start coding without having a design. Such software is bound to fail. Once software does not have a very
good design, the software is bound to fail as it is put into use.

46

48

50

52

54

56

2011 2012 2013 2014 2015 2016 2017

COMPLETED ON TIME

26
28
30
32
34
36
38

2011 2012 2013 2014 2015 2016 2017

FAILED PROJECT BUDGET LOST

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

8

Figure- 6: shows the percentage of software projects Deemed failure .

This Figure 6: shows that, in 2017 there is a decrease in partial failure as compare to previous years,

In the year 2013 and till 2016 duration, it was the tragic phase for software business due to which majority
of the software wasn’t able to compily the drastic changes in the business market.

.
Figure- 7: shows the percentage outcomes of software projects

Again in Figure-7 most developers of software often have one major or comprehensive design called

high-level design. For software to be properly developed and have minimal errors, the software must have
both high-level and low-level (or detail) design. Before coding, both the high-level and detail designs must be
properly done and correction made so as to minimize the errors that might arise from the software

Going through the software development 25 years history just 16.2% of all MIS projects were
completed on time and within budget 52.7% were late and over budget and 31.1% were outright cancelled.
The top two reasons then were lack of user input/involvement and incomplete requirements. Recently there
is an improvement from 16.2% to 29% success rate. Certain projects were as high as 62%.

0

10

20

2011 2012 2013 2014 2015 2016 2017

DEEMED FAILURE

0

10

20

30

40

50

60

70

compared on
time and within

budget

outright
cancelled

were late and
overbudget

Outcomes of Software projects

1992

2017

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

9

Figure- 8: shows the percentage comparisons between waterfall and agile methods success.

Figure-8 shows a comparison of the adaptation of methodologies in dealing with software projects

success. Here is the comparison made on 3 different Classification sizes namely large size, medium size and
small size. Looking at the successful project waterfall methodologies holds 3% for large size, 7% for medium
size, and 44% respectively, whereas the Agile methodology holds 18% for large size, 27% for medium size
and 58% for small size respectively. [23]

Figure- 9: shows the percentage comparisons between waterfall and agile methods for challenged

software development projects.

In Figure- 9. shows comparison in terms of challenged software project the result for Waterfall
methodology shows 57% for large size ,63% for medium size and 42% for small size respectively , But
whereas the Agile methodology shows 59% for large size , 61% for medium size and 38% for small size
respectively.

0

20

40

60

80

Large size
project

Medium size small size

Successful Software Projects

Waterfall

Agile

0

20

40

60

80

Large size
project

Medium size small size

Challenged Software Projects

Waterfall

Agile

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

10

Figure- 10: shows the percentage comparisons between waterfall and agile methods for failed software

development projects

Finally, Figure 10 shows the comparison in terms of software project failures between Waterfall and
Agile methodology the result depicts 42% for large size, 25% for medium size and 11% for small size
respectively whereas Agile shows 23% for large size, 11% for medium size and 4% for small size respectively.
So, therefore the changing scenario in business software’s suits for agile methodology as compared to
Waterfall. [24]

By looking at the usage of a software methodologies we found that those did had more success, 38%
vs. 31%. Those that Used a methodology were still 72% behind schedule, 29% didn’t meet scope, 32% didn’t
meet quality requirements, 40% didn’t meet expected benefits and the numbers are even worse for projects
that did not use a methodology. A software project in its early stage is like an iceberg where you see the tip
above the water and the underwater shape/size can’t be predicted easily.” [25]

5. CONCLUSION

With a focus on IT projects, management methodologies like Agile can be used with some success to
mitigate some of the common issues and help project managers deliver value early. There are many reasons
that can drive a project off the path and inevitably cause it to finish over budget or be heavily delayed. The
success of projects continues to be discussed and studied as many organizations invest millions in hopes to
get some value in return. However, when looking at success to failure comparisons, one of the biggest
factors is the size of the project. With large projects these challenges are magnified and exaggerated
compared to similar challenges on their smaller counterpart projects. There is a utmost need in applying
proper methodology for given software projects and through information gathering approach and better
communication among different phases of software development can only yield better results, the answers
really drive to a improvised and optimize flaw down project from the start. The conclusion is relatively easy
to arrive at if you believe all projects face similar challenges

REFERENCES:
[1]http://www-935.ibm.com/services/us/gbs/bus/pdf/gbe03100-usen-03-making-change-work.pdf
[2]https://www.geneca.com/why-up-to-75-of-software-projects-will-fail
[3]https://hbr.org/2011/09/why-your-it-project-may-be-riskier-than-you-think
[4]https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/delivering-large-scale-it-
projects-on-time-on-budget-and-on-value.Portland Business Journal
[5]https://www.pmi.org/learning/thought-leadership/pulse
[6]Perry,W.E., Effective Methods for Software Testing, John Wiley & Sons, 2nd Edition, 1999 .
[7]Spillner,A.,From V-Model to W-Model - Establishing the Whole Test Process, Proceedings Conquest - 4th
Conf. on Quality Engineering in Software Technology, (2000) .

0

10

20

30

40

50

Large size
project

Medium size small size

Failed Software Projects

Waterfall

Agile

A SYSTEMATIC STUDY ON VARIOUS SOFTWARE DEFECTS AND THEIR IMPACT ON SOFTWARE..... vOlUme - 8 | issUe - 5 | feBRUaRY - 2019

__

__
Journal for all Subjects : www.lbp.world

11

[8]Jalote,P.,An Integrated Approach to Software Engineering, Narosa Publishing House, 3 rd Edition, 2007.
[9]Humphrey, W.S."Managing the Software Process", Chapter 17 - Defect Prevention, ISBN-0-201-18095-2 .
[10]Weber,D.G.,"Formal specification of fault-tolerance and its relation to computer security", Proc. 5th Int.
Workshop on Software Spec. and Design, pp 273-277, Pittsburgh, PA, May 1989 .
[11]Mays,R.G.,Jones,C.L.,Holloway,G.J.,Studinski,D.P.,"Experiences with Defect Prevention" IBM Systems
Journal, Volume 29, No. 1, 1990.
[12]Anderson,T.,Barrett,P.A.,Halliwell, D.N., Moudling, M.L., "An evaluation of software fault tolerance in a
practical system", Proc. Fault Tolerant Computing Symposium 1985, pp. 140-145.
[13]Boehm,B.,Basili,V.,Software Defect Reduction Top 10 List, Computer, 34(1), 2001,135,137
www.sei.cmu.edu/publications/documents/92.reports/92.tr.022.html
[14]Abraham,P.,Leeba,S.,Abraham,D.,Paul,R.,"Defect Prevention Techniques for High Quality and Reduced
Cycle Time" An ESSI Process Improvement Experiment (PIE), EuroSPI 98.
[15]Williams,L.Instilling a Defect Prevention Philosophy. Frontiers in Education Conference. 1998. Pages
1308-1312 .
[16]Edwards,J.(2017).7 simple ways to fail at agile. CIO. Retrieved from
https://www.cio.com/article/3234366/project-management/7-simple-ways-to-fail-at-agile.html
[17]Flyvbjerg,B.,& Budzier,A.(2011).Why Your IT Project May Be Riskier Than You Think. Harvard Business
Review. Retrieved fromhttps://hbr.org/2011/09/why-your-it-project-may-be-riskier-than-you-think.
[18]Mieritz, L(2012).Gartner Survey Shows Why Projects Fail 501. 2012: G00231952. Retrieved from
https://thisiswhatgoodlookslike.com/2012/06/10/gartner-survey-shows-why-projects-fail.
[19]Nicholas,J.,&Hiding.(2010). Management principles associated with IT project success.International
Journal of Management & Information Systems (Online Retrieved from https://ez.sjcny.edu/login?
url=https://ez.sjcny.edu:2099/docview/1778076247?accountid=28722.
[20]Project Management Institute.(2015).Capturing the value of project management. Project Management
Institute. Retrieved from
https://www.pmi.org//media/pmi/documents/public/pdf/learning/thoughtleadership/pulse/pulse-of-the-
profession-2015.pdf.
[21]The Standish Group. Retrieved from https://www.projectsmart.co.uk/white-papers/chaos-report.pdf.
[22]Standish Group Report CHAOS Report 2015.
[23]Wrike Complete Collection of Project Management Statistics 2015.
[24]An Agile Agenda. 6point6 Limited Registered in England and Wales Company (2017).
[25]Project Management Institute Pulse of the Profession 2017.

Meer Tauseef Ali
Research Scholar, Department of Computer Science, Rayalaseema University, Kurnool, A.P.

Dr. Syed Abdul Sattar
Professor, Director (R&D) & Principal, Nawab Shah Alam Khan College of Engg. & Tech.,
Hyderabad.

